
RNCDDS - RANDOM NETWORK CODED DISTRIBUTED DATA SYSTEM

Hiroshi Nishida 1, Thinh Nguyen 2

1 ASUSA Corporation, 2 School of EECS, Oregon State University

ABSTRACT

Many Random Network Coding based storage systems have
been proposed to increase robustness in terms of data preser-
vation and storage efficiency. However, there are two ma-
jor practical issues: (1) slow encoding and decoding speeds
and (2) difficult access to the data. In this paper, RNCDDS
solves problem (1) by introducing a new and efficient Ga-
lois Field arithmetic library and problem (2) by employing
a new JavaScript program. As a result, RNCDDS is not
only theoretically more robust and storage efficient than ma-
jor distributed data systems such as Hadoop (HDFS) and
GlusterFS, but also outperforms them in all speed measure-
ments. Also, the proposed JavaScript program enables easy
data fetch through a web browser including watching a video
with an HTML5 video player and has potential for drastically
reducing data storage amount in a cloud system or Content
Delivery Network.

Index Terms— Distributed System, Data Storage, Ran-
dom Network Coding, Galois Field, Multimedia Streaming,
Content Delivery Network, Cloud Computing

1. INTRODUCTION

Distributed data systems are widely employed in cloud com-
puting not only to store a huge amount of data but also to
assure semi-permanent data preservation. Hadoop [1], a de
facto standard distributed data system in cloud computing, is
used by many enterprises and serves a vast amount of data
in their data centers. However, due to their simple raw data
distribution scheme, most distributed data systems do not al-
ways achieve both high robustness and storage efficiency at
the same time. For instance in a Hadoop cluster, a file is split
into some pieces and their replications are distributed to the
servers as shown in Fig. 1. To guarantee the redundancy of R
servers, i.e., the retrieval of data under concurrent failure of
R servers, Hadoop requires 1+R storage size in a cluster. In
other words to store a 1GB file, 3GB storage is necessary in
a Hadoop cluster consisting of original server plus two other
fault-tolerant servers. This is also applicable to the case in
which simple replications of the original file are placed on the
storage servers such as GlusterFS [2] (Fig. 2). On the other
hand, a distributed data system based on Random Network
Coding (RNC) that for instance distributes encoded data with

Fig. 1: Hadoop splits a file into pieces and distributes their
replications to servers.

Fig. 2: GlusterFS places replications on servers.

1=3 the size of the original file to each server requires only
1 + R=3 storage in a cluster, which saves as much as 44%
storage for R = 2 compared to Hadoop or GlusterFS. How-
ever, current RNC based systems suffer from the following
two major issues:

1. The slow processing speed in encoding and decoding
2. The difficulty in access to data from clients

In our investigation, fast processing in encoding and decoding
turned out to be difficult to achieve due to lack in an efficient
Galois Field (GF ) arithmetic library with a lax license (see
Sec. 3 and 4). Also, users may hesitate to use dedicated client
programs employed in most RNC based systems to access the
encoded data for security reasons and will prefer to watch a
video on a web browser. RNCDDS solved those issues and
made an RNC based system practical by introducing the fol-
lowing two programs:

1. gf-nishida-16: a new and efficient GF arithmetic li-
brary

2. RNC.js: a JavaScript program to download and decode
RNC encoded data and to play a video with an HTML5
video player

Moreover, RNCDDS is planned to be open source and will be
publicly downloadable in the future.

cASUSA Corporation cIEEE 2017



This paper presents the architecture of RNCDDS together
with the fundamentals of RNC, a brief explanation of gf-
nishida-16, its advantages over the other major cloud storage
systems, and its efficiency in delivering multimedia contents.

2. RELATED WORK

Other than Hadoop and GlusterFS, many storage systems,
such as OpenAFS [3], Ceph [4], MooseFS [5], Quantcast File
System (QFS) [6] and Pyramid Codes [7], have been pro-
posed and we believe they play an important role in cloud
computing. Among those systems, Hadoop, GlusterFS, Ope-
nAFS, Ceph and MooseFS are based on non-coded data dis-
tribution, while QFS and Pyramid Codes employs coded data
distribution by Erasure Coding or similar techniques in or-
der to increase the robustness and storage capacity efficiency.
Erasure Coding is very similar to RNC but basically limits
the number of encoded data. Therefore unlike RNCDDS, it
cannot distribute as many different encoded data as possible
to servers, which restricts the usage in multimedia streaming.
RNC based storage systems are mostly proposed for used in
P2P networks [8] [9] [10] and are proved to be robust, resilient
and efficient in storage capacity. However to the best of our
knowledge, there are few papers that refer to the encoding and
decoding speeds [11]. In our research, we concluded that an
RNC based storage system could not be fast enough without
an efficient GF arithmetic library (see Sec. 3).

As for multimedia streaming with RNC, many papers are
focused on the usage in P2P networks [12] [13] [14] or wire-
less networks [15] [16], and there are few practical systems
based on the client-server style except for [17] which intro-
duces a unique P2P assisted client-server system. Also, there
is little information on the accessibility to RNC data, and we
have not confirmed if there is a program to decode and di-
rectly access RNC data on a web browser. To the best of
our knowledge, there is no practical RNC based multimedia
streaming system in a pure client-server style with easy access
from the clients.

3. FUNDAMENTALS OF RNC

RNC provides high robustness and storage efficiency by uti-
lizing the characteristics of linear equations. Suppose we have
three integers x1 = 3, x2 = 1, x3 = 2 and randomly create
many linear equations such as:

8>>>>>><
>>>>>>:

2x1 + 5x2 + x3 = 13

7x1 + 3x2 + 8x3 = 42

4x1 + x2 + 2x3 = 19

5x1 + 4x2 + 9x3 = 33

� � �

(1)

To obtain the original x1, x2, x3, we basically need only three
equations out of them, which is the fundamental technique

Fig. 3: RNC distributes encoded data to servers, where the
size of each encoded file is approximately 1/3 of the original.

employed by RNC. RNC splits a file into some pieces, say x1,
x2, x3, and creates linear equations (encode) with randomly
generated coefficients as such as:

8><
>:

a1;1x1 + a1;2x2 + a1;3x3 = b1

a2;1x1 + a2;2x2 + a2;3x3 = b2

� � �

(2)

Then, each of b1, b2, � � � is distributed to each server together
with associate coefficients as and composes one encoded file
as shown in Fig. 3. To restore the original file, we need to col-
lect only three encoded files from any combination of three
servers and to obtain x1, x2, x3 by solving the system of lin-
ear equations (decoding). In other words, as long as three
servers that have the encoded files are alive in the system, the
original file can be regained. Therefore in Fig. 3, the cluster
guarantees the retrieval of data under the failure of any two
servers.

Also, note that the size of bn; 8n is equal to that of x1,
x2, x3 (= 1/3 of the original file size) because the arithmetic
computations in (2) are executed in GF . Since the size of
as (16bits � 3) is usually negligibly small compared to that
of bn, we can safely regard the size of each encoded file as
almost equal to 1/3 of the original file size. As a result, the
storage size in Fig. 3 is only 5=3 with the redundancy of two
servers, while Hadoop and GlusterFS require a size of 3 stor-
age with the same redundancy.

The only drawback of RNC will be the computation time;
creating linear equations (encoding) and solving a system of
linear equations (decoding) require certain amounts of time
especially in GF . In our development of RNCDDS, we no-
ticed the times taken for encoding and decoding were greatly
affected by the computation speed in GF . We first started our
project with one of open source GF arithmetic libraries with-
out considering its speed, which later turned out to be very
slow and to be impractical. We afterward employed another
open source library called GF-Complete [18] that focused on
the processing speed using SSE, and gained preferable results,
though it has been removed by its author due to the possible
patent infringement [19]. Using SSE for GF arithmetic com-
putation seems to be caught on a patent. However, it encour-
aged us to develop an original GF arithmetic library and gave
us the idea to create gf-nishida-16.

2



4. GF-NISHIDA-16

Though arithmetic computation in GF is indispensable for
coded data systems, it costs expensive and therefore affects
the system performance. Moreover, some computation tech-
niques are patented and do not allow users to easily use them.
Gf-nishida-16 [20], an open source GF (216) arithmetic li-
brary with a 2-Clause BSD license, resolves those issues and
provides high speed arithmetic computation in GF (216). Due
to space limitations, we skip the explanation on its details but
note the high speed processing in gf-nishida-16 is achieved
by optimizing two step memory lookup. Please see our tech-
nical paper [21] for the full description. In this section, we
introduce its benchmark results and show its efficiency.

We measured the elapsed times for multiplication and di-
vision with the following open source GF libraries:

gf-nishida-8 An 8bit version of gf-nishida-16.
gf-nishida-16 Our main library.
gf-nishida-region-16 A region computation version of gf-

nishida-16 employed by RNCDDS which speeds up the
repeated computation of a� x or a� x in GF where a
is fixed and x is variable (see [21]).

gf-complete-* An efficient GF (2n) library with SSE [18]
[19].

gf-basic-8 A simple 8bit library [22].
gf-plank-* A library based on [23].
gf-plank-logtable-16 A 16bit library similar to gf-nishida-

16 [23].
gf-clmul-128 A 128bit program retrieved from Solaris

source code that uses Intel CLMUL instruction set spe-
cialized for GF (2n) multiplication.

gf-ff-* A library downloaded from [24].
gf-aes-gcm-128 A 128bit GF program retrieved from

FreeBSD source code that uses no special techniques.

Note that the results in division exclude some libraries that do
not have division functions.

The benchmark results are shown in Table 1. As a conse-
quence, gf-nishida-16, especially gf-nishida-region-16 used
by RNCDDS shows excellent performance in both multipli-
cation and division. Considering its performance and risk-
lessness of patent infringement, we believe gf-nishida-16 is
the best library for the GF arithmetic computation in RNC.

5. RNCDDS

5.1. Encoding

Suppose a client distributes four encoded files to servers in a
cluster, then it first decides three 16bit coefficients for each
of them such as ak;1, ak;2, ak;3; 8k 2 f1; 2; 3; 4g. The client
next sends them to each server together with other file infor-
mation such as the file size, modification time. In encoding,
a file is cut down every 6bytes and each 2bytes in the 6byte

Table 1: Elapsed times (ms) in multiplication and division
with GF (2n) arithmetic libraries (the shorter, the faster).

Library Multiplication Division
gf-nishida-region-16 41583 41557
gf-complete-64 55106 4424996
gf-nishida-8 61171 86159
gf-basic-8 61195 114292
gf-nishida-16 118850 118973
gf-complete-32 168429 10053109
gf-plank-logtable-16 244935 251010
gf-plank-32 314016 27664514
gf-plank-16 391792 369352
gf-plank-8 406299 360553
gf-clmul-128 1281013 -
gf-ff-64 5231520 5393946
gf-ff-32 10464125 105356429
gf-aes-gcm-128 14013111 -

6Bytes 6Bytes 6Bytes ...

2Bytes
x
1

2Bytes
x
2

2Bytes
x
3

Fig. 4: RNCDDS splits a file every 6bytes and assigns each
2bytes to x1, x2, x3.

chunk is assigned to x1, x2, x3 as illustrated in Fig. 4. Each
chunk is encoded by calculating bk = ak;1x1 + ak;2x2 +
ak;3x3; 8k 2 f1; 2; 3; 4g with gf-nishida-16 and newly ob-
tained 2byte data bk is sent to server k, which is repeated
till the end of the file. Note the size of the encoded data
is basically 1/3 of the size of the original file. However as
a header containing the coefficients ak;1, ak;2, ak;3, file at-
tributes, checksum, etc is appended to it, the final size of an
encoded file stored on each server becomes slightly greater
than it.

5.2. Decoding

Decoding starts with searching for the servers that have the
target files, where RNCDDS performs it by using Consistent
Hashing [25] without a metadata server (see Sec. 5.3). If
two or fewer servers have the files, the decoding fails. If
three or more servers have the files, then the client chooses
three servers and collects the coefficients ak;1, ak;2, ak;3 from
them. The client next retrieves the encoded data and solves
the following system of linear equations for each 2byte chunk
of bk by the Gaussian Elimination:

8><
>:

a1;1x1 + a1;2x2 + a1;3x3 = b1

a2;1x1 + a2;2x2 + a2;3x3 = b2

a3;1x1 + a3;2x2 + a3;3x3 = b3:

(3)

3



2Bytes
x

1

2Bytes
x

2

2Bytes
x

3

2Bytes
b

k
 = a

k,1
x

1
+ a

k,2
x

2
+ a

k,3
x

3

Fig. 5: RNCDDS encodes 6byte data to 2byte data.

(a) An initial state of a hash ring.

(b) Before adding a server. (c) After adding server 5.

Fig. 6: An example of file management by Consistent Hash-
ing.

Since x1, x2, x3 hereby are 2bytes, the original file is restored
every 2 � 3 = 6bytes. The decoding ends at the end of the
file and the decoded file is checked with SHA256.

5.3. File Management by Consistent Hashing

Hadoop manages file information such as the attributes and
locations by a metadata server. A metadata server easily
scales the cluster but can be a single point of failure and
its failure disables the access to all data in the cluster. In
RNCDDS, on the other hand, files are managed by Con-
sistent Hashing (CH) that provides resilient data distribu-
tion with minimum reorganization when servers are added or
deleted without a metadata server. For instance, suppose that
there are four servers and four files test.c, Makefile,
Readme.txt and TODO. CH initially locates the servers as
shown in Fig. 6 (a) by hashing their names and then locates
the four files in a similar way as seen in 6 (b). Since the hash
code or owner of a file in CH is the closest node (server) in
the clockwise direction on the ring, the owner of TODO be-
comes server 3 and that of test.c becomes server 2. When
server 5 is added to the ring as seen in Fig. 6 (c), the only file
whose owner is affected is TODO, where its new owner be-
comes server 5. Thus, CH achieves resilient and scalable file
management.

In RNCDDS, servers in a cluster maintain a common
server list and a client retrieves it when it connects to one of
them. The client then creates a hash ring based on it as shown
in Fig. 6 (a) and looks up files in a way illustrated in Fig. 6
(b) (c). Once the hash ring is created, the time complexity
for the file lookup is only O(1). Note RNCDDS locates files
by broadcasting messages to all servers even if there is a dis-
crepancy with the server lists owned by servers and CH takes
no effect. Thus, RNCDDS pays scrupulous attention to data
preservation.

5.4. Programs

RNCDDS consists of three C programs tested with FreeBSD
11 and CentOS 7 and a JavaScript program. The C programs
depend on only a few external libraries such as OpenSSL,
FUSE, libevent2 (only for CentOS, the FreeBSD version uses
kqueue) so that they can be easily ported to other platforms.

rncddsd is a server program that communicates with
client programs rncdds and rncfsd and receives/sends,
saves/reads encoded files. It is usually run as a daemon pro-
cess.

rncdds, corresponding to Hadoop’s hadoop fs, is a
command line client program that encodes, uploads, decodes,
downloads files and sends other messages to rncddsd. For
example,
% rncdds put fileA /dirA/
uploads fileA under /dirA on the servers. Note rncdds is de-
signed to achieve fast directory upload and download by mul-
tithreaded parallel pipeline processing, where encoding/de-
coding and reading/saving processes are executed simultane-
ously. Our benchmark results in Sec. 7 show its superior per-
formance.

rncfsd mounts RNCDDS as a filesystem through FUSE
userland filesystem library [26] so that one can access the
files as if they were on the local host. This is very convenient
though it does not perform as well as rncdds (see Table 2).
However, using an SSD and/or a small size of HDD as cache
to store the decoded files, rncfsd minimizes the overheads
for decoding. Both rncdds and rncfsd check the con-
sistency of encoded files by their timestamps and inspect the
decoded files with SHA256.

RNC.js is a JavaScript program that downloads RNC en-
coded data from three servers via HTTP using XMLHttpRe-
quest and decodes them. If the decoded data is a video,
RNC.js plays it on a web browser with an HTML5 player.
It is currently capable of playing segmented MP4 and WebM
video data and appends a segment of data at a time to the
buffer of the video player while playing it. Due to the over-
heads for decoding through JavaScript, video playback with
RNC.js consumes slightly higher CPU power than directly
playing MP4 or WebM data though the difference is very
small. Fig. 7 compares the CPU usages in direct playback
(left) and playback by RNC.js (right), where there is no re-

4



Non-RNC RNC.js

Fig. 7: Comparison in CPU usage between direct playback
and playback by RNC.js. There is no remarkable difference.

(a) Five HTTP servers.

(b) An HTTP service system by five RNCDDS servers.

Fig. 8: An example of load distribution by RNCDDS.

markable difference between their CPU usages except for the
spike in each playback due to page loading. Suppose the CPU
usage for direct playback of MP4 data is 6 to 7%, RNC.js uses
roughly 7 to 9% CPU power. If decoding functions written in
C are incorporated into the web browsers, the CPU usage will
be even lowered.

5.5. Load Distribution by RNCDDS

RNCDDS is designed not only to distribute data but also to
distribute load on the servers. In this subsection, we introduce
a unique HTTP service system that distributes the load on the
servers by RNCDDS as its application example.

Suppose we have five regular HTTP servers as shown in
Fig. 8 (a). If we replace these servers with an RNCDDS sys-
tem consisting of five servers that store all the data the original
HTTP servers owned as seen in Fig. 8 (b) and run a filesystem
client program rncfsd (see Sec. 5.4) on each server, then all
the data become retrievable from all the RNCDDS servers.
If we also run an HTTP service program such as Apache or
Nginx on each server, then all the data the original HTTP
servers had can be served from any new RNCDDS server and
herewith the load by HTTP access can be distributed to all
RNCDDS servers. This system provides the following ad-
vantages:

1. Heavy access to a server in Fig. 8 (a) degrades the per-
formance and sometimes causes inaccessibility to the
server. The load distribution by a system in Fig. 8 (b)
decreases the possibility of server inaccessibility.

Fig. 9: Servers store the same files in a typical CDN.

Fig. 10: RNCDDS reduces the data storage amount in a CDN.

2. The RNCDDS system with data redundancy such as
R = 2 can be operated under the fault of two servers,
which increases robustness and reliability of the sys-
tem.

Note the overheads for decoding can be alleviated by
rncfsd’s cache which temporarily stores decoded data on
an SSD.

6. MULTIMEDIA STREAMING WITH RNCDDS

Many multimedia streaming services are provided through a
Content Delivery Network (CDN) which is closely connected
with cloud storage systems. In a typical CDN, servers store
the same files as shown in Fig. 9 in order to distribute access
from clients. However, it requires a vast amount of storage
space and causes significant performance degradation for the
following reasons:

1. The usage rate of HDDs over SSDs increases and the
throughput drops in consequence.

2. The cache hit ratio decreases.

If we replace those files with RNC encoded files and let
clients access them through RNC.js as seen in Fig. 10, the
storage size becomes 1/3 and therefore not only a large
amount of budget can be saved but also the throughput will be
improved. This is a huge advantage and we expect RNCDDS
to be employed by many video streaming CDNs. We also
note that there is almost no need to re-configure the server
settings; if the servers provide video data via HTTP with Ng-
inx or Apache, all what the administrators have to do are to
replace the original video files with the corresponding RNC
encoded files and to add a few lines such as ”add header
’Access-Control-Allow-Credentials’ ’true’;” to their config-
uration files as a client needs a cross-origin request (CORS)
to access three different RNC encoded file servers. Also, note
the total amount of traffic does not change because a client

5



Fig. 11: A client first accesses a portal site server and then
retrieves RNC encoded data from three RNC servers.

downloads three encoded files whose sizes are 1/3 of the orig-
inal.

In our prototype system, a client first accesses a por-
tal site and downloads RNC.js and the information on the
three RNC encoded file servers. The client then fetches
RNC encoded data from them via HTTP and plays a video
with RNC.js (see Fig. 11). Our RNC demonstration video
with three RNC encoded file servers can be watched at
http://rnc01.asusa.net and the original video (no RNC) can be
watched at http://rnc01.asusa.net/videos.

7. BENCHMARK RESULTS

To assure our system’s performance, we measured the elapsed
times for uploading and downloading a directory containing
5,533 sub-directories and 80,919 files and its 63GB tarball
file with Hadoop, GlusterFS and RNCDDS (rncdds and
rncfsd). Each measurement was repeated ten times and was
averaged. The following is the hardware specification of our
host machines:

CPU Intel Xeon E3-1225v5
RAM DDR4-2133 ECC Non-buffered 64GB
NIC Intel X550 10GBase-T (1Gbps was used in benchmark

due to the capacity of our switch)
HDD 2TB 64MB Cache 7200RPM SATA3 � 2 as RAID1

for main storage, 1TB 64MB Cache 7200RPM SATA3
for rncfsd’s write cache

SSD 128GB SATA3 for rncfsd’s read cache

Four servers were used as data storage, that is, there were
four slave nodes in Hadoop and four regular servers in Glus-
terFS and RNCDDS, and one client sent/received data to/from
them. As for the the redundancy, we used R = 1, i.e., two
replications for Hadoop and GlusterFS and four encoded files
for rncdds and rncfsd. All the hosts were operated with
CentOS 7. To upload/download a file/directory, we used
% hadoop fs -copyFromLocal/-copyToLocal
command for Hadoop and
% rncdds put/get
command for rncdds. As GlusterFS and rncfsd handle
data through filesystems,

Table 2: Elapsed times for uploading/downloading 63GB
file/directory (the shorter, the faster).

Hadoop GlusterFS rncdds rncfsd
File upload 10m30.2s 17m26.4s 8m49.6s 8m56.6s
Dir upload 48m34.0s 54m18.5s 12m31.1s 17m04.5s
File download 10m31.9s 10m51.3s 8m40.0s 9m12.8s
Dir download 20m51.0s 25m10.0s 16m51.1s 34m54.5s

% cp -a
was used towards the mounted directories.

The results are shown in Table 2. Overall, rncdds shows
excellent performance and surpasses Hadoop and GlusterFS
in all metrics. The directory upload with Hadoop and
GlusterFS takes much longer than that with rncdds and
rncfsd. The performance degradation in handling small
files with Hadoop seems to be a known issue [27] [28]. The
overheads by the filesystem interface reduces the performance
of rncfsd compared to rncdds, which is conspicuous at
the directory download. rncdds downloads, decodes and
saves multiple files simultaneously, while rncfsd has to
process the files one by one because the filesystem does not
pass the order for the next file till the order for the cur-
rent file has been completely processed. Note both rncdds
and rncfsd consume more CPU power than Hadoop and
GlusterFS. Therefore, use of a fast CPU is recommended for
RNCDDS.

8. CONCLUSION

In this paper, we have illustrated the architecture of RNCDDS
and have shown its robustness, storage efficiency, superb per-
formance and high affinity with multimedia streaming. We
believe RNCDDS will not only play an important role in the
future cloud multimedia streaming but will also contribute to
the innovation in the distributed storage technology. How-
ever, the optimization of RNC.js and research on the optimal
allocation of RNC encoded files to servers in terms of load
and storage size balance remain as our future work.

9. REFERENCES

[1] “Hadoop,” http://hadoop.apache.org/.

[2] “Glusterfs,” https://www.gluster.org/.

[3] “Openafs,” https://www.openafs.org/.

[4] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell
D. E. Long, and Carlos Maltzahn, “Ceph: A scalable,
high-performance distributed file system,” in Proceed-
ings of the 7th Symposium on Operating Systems Design
and Implementation, Berkeley, CA, USA, 2006, OSDI
’06, pp. 307–320, USENIX Association.

6



[5] “Moosefs,” https://moosefs.org/.

[6] Michael Ovsiannikov, Silvius Rus, Damian Reeves,
Paul Sutter, Sriram Rao, and Jim Kelly, “The quant-
cast file system,” Proc. VLDB Endow., vol. 6, no. 11,
pp. 1092–1101, Aug. 2013.

[7] Cheng Huang, Minghua Chen, and Jin Li, “Pyramid
codes: Flexible schemes to trade space for access effi-
ciency in reliable data storage systems,” Trans. Storage,
vol. 9, no. 1, pp. 3:1–3:28, Mar. 2013.

[8] Kien Nguyen, Thinh Nguyen, Yevgeniy Kovchegov, and
Viet Le, “Distributed data replenishment,” IEEE Trans.
Parallel Distrib. Syst., vol. 24, no. 2, pp. 275–287, Feb.
2013.

[9] B. Li and D. Niu, “Random network coding in peer-to-
peer networks: From theory to practice,” Proceedings
of the IEEE, vol. 99, no. 3, pp. 513–523, March 2011.

[10] Alexandros G. Dimakis, P. Brighten Godfrey, Yunnan
Wu, Martin J. Wainwright, and Kannan Ramchandran,
“Network coding for distributed storage systems,” IEEE
Trans. Inf. Theor., vol. 56, no. 9, pp. 4539–4551, Sept.
2010.

[11] Ádám Visegrádi and Péter Kacsuk, Efficient Random
Network Coding for Distributed Storage Systems, pp.
385–394, Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2014.

[12] Kien Nguyen, Thinh Nguyen, and Sen-Ching Cheung,
“Video streaming with network coding,” J. Signal Pro-
cess. Syst., vol. 59, no. 3, pp. 319–333, June 2010.

[13] Anh Tuan Nguyen, Baochun Li, and Frank Eliassen,
“Chameleon: Adaptive peer-to-peer streaming with net-
work coding,” in Proceedings of the 29th Conference
on Information Communications, Piscataway, NJ, USA,
2010, INFOCOM’10, pp. 2088–2096, IEEE Press.

[14] B. Barekatain, D. Khezrimotlagh, M. Aizaini Maarof,
H. R. Ghaeini, S. Salleh, A. A. Quintana, B. Akbari, and
A. T. Cabrera, “MATIN: A Random Network Coding
Based Framework for High Quality Peer-to-Peer Live
Video Streaming,” PLoS ONE, vol. 8, pp. e69844, Aug.
2013.

[15] Luı́sa Lima, Steluta Gheorghiu, João Barros, Muriel
Médard, and Alberto Lopez Toledo, “Secure network
coding for multi-resolution wireless video streaming,”
IEEE J.Sel. A. Commun., vol. 28, no. 3, pp. 377–388,
Apr. 2010.

[16] D. Vukobratovi, C. Khirallah, V. Stankovi, and J. S.
Thompson, “Random network coding for multimedia

delivery services in lte/lte-advanced,” IEEE Transac-
tions on Multimedia, vol. 16, no. 1, pp. 277–282, Jan
2014.

[17] Z. Liu, C. Wu, B. Li, and S. Zhao, “Uusee: Large-scale
operational on-demand streaming with random network
coding,” in 2010 Proceedings IEEE INFOCOM, March
2010, pp. 1–9.

[18] James S. Plank, Kevin M. Greenan, and Ethan L. Miller,
“Screaming fast galois field arithmetic using intel simd
instructions,” in 11th USENIX Conference on File and
Storage Technologies (FAST 13), San Jose, CA, Feb.
2013, pp. 298–306, USENIX Association.

[19] James S. Plank and et al., “Gf-complete: A com-
prehensive open source library for galois field arith-
metic, version 1.0,” http://web.eecs.utk.edu/
˜plank/plank/papers/CS-13-716.html.

[20] Hiroshi Nishida, “gf-nishida-16 web site,” https://
github.com/scopedog/gf-nishida-16/.

[21] Hiroshi Nishida, “gf-nishida-16: Simple and effi-
cient gf(216) library,” https://github.com/
scopedog/gf-nishida-16/blob/master/
gf-nishida-16.pdf.

[22] “Basic library for calculation on finite field,” http://
www.codeforge.com/article/242688/.

[23] James S. Plank., “Fast galois field arithmetic library in
c/c++,” http://web.eecs.utk.edu/˜plank/
plank/papers/CS-07-593/.

[24] Antonio Bellezza, “Binary finite field library,”
http://www.beautylabs.net/software/
finitefields.html.

[25] David Karger, Eric Lehman, Tom Leighton, Rina Pani-
grahy, Matthew Levine, and Daniel Lewin, “Consistent
hashing and random trees: distributed caching protocols
for relieving hot spots on the world wide web,” in Pro-
ceedings of the twenty-ninth annual ACM symposium on
Theory of computing, New York, NY, USA, 1997, STOC
’97, pp. 654–663, ACM.

[26] “Fuse (filesystem in userspace),” https://github.
com/libfuse/.

[27] “Dealing with hadoop’s small files prob-
lem,” http://snowplowanalytics.
com/blog/2013/05/30/
dealing-with-hadoops-small-files-problem/.

[28] “The small files problem,” http://
blog.cloudera.com/blog/2009/02/
the-small-files-problem/.

7


